NTRS - NASA Technical Reports Server

Back to Results
Acceleration effects in solid propellant rocket motorsThe performance variations due to acceleration loads imposed on spinning solid propellant rocket motors are investigated. The four potentially most significant modes of acceleration-induced phenomena are identified from a study of the literature and modeled. The four modes are a mechanical mode which deals with deformations of the propellant and case: a thermodynamic mode which covers acceleration-induced combustion phenomena; a stress mode which covers the stressed propellant's effect on burn rate; and a gas dynamic mode which deals with changes in gas flow in the chamber and through the nozzle. Simplified models of each mode are developed or taken from the literature and are added to an internal ballistics evaluation computer program. The resulting analysis is the first to include all of the modes. In order to do this an original analysis of the mechanical and stress modes was necessary. However, the analysis shows that the stress mode is not important for the circular perforated grains studied. The other effects are shown to have a significant influence on solid rocket motor performance. The magnitude of the different mode effects are such that one may not be ignored over the others as has been done in the past. The results of the analysis are compared to published rocket motor data. The comparisons indicate an erosive burning effect that is a function of spin rate. A qualitative explanation of the erosive effect is presented.
Document ID
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Langhenry, M. T.
(Martin Marietta Corp. Denver, CO, United States)
Date Acquired
August 12, 2013
Publication Date
June 1, 1986
Subject Category
Spacecraft Propulsion And Power
Report/Patent Number
AIAA PAPER 86-1577
Accession Number
Funding Number(s)
Distribution Limits

Available Downloads

There are no available downloads for this record.
No Preview Available