NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Climatic changes resulting from mass extinctions at the K-T boundary (and other bio-events)The mass extinctions at the Cretaceous-Tertiary (K-T) boundary include about 90 percent of marine calcareous nannoplankton (coccoliths), and carbon-isotope data show that marine primary productivity was drastically reduced for about 500,000 years after the boundary event, the so-called Strangelove Ocean effect. One result of the elimination of most marine phytoplankton would have been a severe reduction in production of dimethyl sulfide (DMS), a biogenic gas that is believed to be the major precursor of cloud condensation nuclei (CCN) over the oceans. A drastic reduction in marine CCN should lead to a cloud canopy with significantly lower reflectivity, and hence cause a significant warming at the earth's surface. Calculations suggest that, all other things being held constant, a reduction in CCN of more than 80 percent (a reasonable value for the K-T extinctions) could have produced a rapid global warming of 6 C or more. Oxygen-isotope analyses of marine sediments, and other kinds of paleoclimatic data, have provided for a marked warming, and a general instability of climate coincident with the killoff of marine plankton at the K-T boundary. Similar reductions in phytoplankton abundance at other boundaries, as indicated by marked shifts in carbon-isotope curves, suggest that severe temperature changes may have accompanied other mass extinctions, and raises the intriguing possibility that the extinction events themselves could have contributed to the climatic instabilities at critical bio-events in the geologic record.
Document ID
19890012002
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Rampino, Michael R.
(New York Univ. New York, NY, United States)
Volk, Tyler
(New York Univ. New York, NY, United States)
Date Acquired
September 5, 2013
Publication Date
January 1, 1988
Publication Information
Publication: Lunar and Planetary Inst., Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality
Subject Category
Geophysics
Accession Number
89N21373
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available