NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic haloPlanetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.
Document ID
19900018267
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Dinerstein, Harriet L.
(Texas Univ. Austin, TX, United States)
Lester, Daniel F.
(Texas Univ. Austin, TX, United States)
Date Acquired
September 6, 2013
Publication Date
April 1, 1990
Publication Information
Publication: NASA, Ames Research Center, Carbon in the Galaxy: Studies from Earth and Space
Subject Category
Astrophysics
Accession Number
90N27583
Funding Number(s)
CONTRACT_GRANT: JPL-957285
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available