NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Impact fracture experiments simulating interstellar grain-grain collisionsOxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture, plus metal vapor. This points: (1) at complex reaction mechanisms between dissolved H2O, CO/CO2 (and N2) components within the mineral structure or during fracture, and (2) at the possibility that similar emission processes occur following grain-grain collisions in interstellar dust clouds.
Document ID
19900018268
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Freund, Friedemann
(NASA Ames Research Center Moffett Field, CA., United States)
Chang, Sherwood
(NASA Ames Research Center Moffett Field, CA., United States)
Dickinson, J. Thomas
(Washington State Univ. Pullman., United States)
Date Acquired
September 6, 2013
Publication Date
April 1, 1990
Publication Information
Publication: Carbon in the Galaxy: Studies from Earth and Space
Subject Category
Astrophysics
Accession Number
90N27584
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available