NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Imaging spectrophotometry of the nuclear outflow of NGC 1068This observational program (in conjunction with R. B. Tully (IfA, Honolulu), and J. Bland (Rice U., Houston)) aims to constrain the kinematic organization and dominant excitation mechanisms of ionized gas in active galaxies. More generally, researchers are interested in the dynamics of radiative, supersonic flows in the Interstellar Medium (ISM). Imaging Fabry-Perot interferometers and low-noise Charge Coupled Devices (CCDs) are used for complete spatial coverage of the complex gas distribution in circumnuclear narrow-line regions (NLRs). Extranuclear emission line widths in NLRs can exceed 3000 km s(-1), so to avoid inter-order confusion researchers use an etalon of 4000 km s(-1) free spectral range to map (N II) lambda lambda 6548, 6583 and H alpha. To maximize spatial resolution, researchers select nearby active systems independent of luminosity but known to possess interesting morphologies and/or high-velocity extranuclear ionized gas. Monochromatic images Full Width Half Maximum (FWHM) approx. 65 km s(-1) have thus far been obtained in 1 second or better seeing at the U. Hawaii 2.2m, CFH 3.6m, and CTIO 4.0m telescopes. These are stacked into grids of line profiles, of spectrophotometric quality, at sub-arcsecond increments across a 3 second field. To handle the approx. 20,000 to 300,000 useful spectra that arise from a typical night's work, researchers have developed a complete analysis and reduction package for VAX and Sun image workstations. Reduction involves parametrization of approx. 10 to the 8th raw data points to a few maps (e.g., velocities of each kinematic subsystem, continuum-free line fluxes) containing approx. 10 to the 5th pixels. Researchers identify kinematic and structural symmetries by examining these maps and the point to point variations of the synthesized line profiles. The combination of monochromatic images and full spatial sampling of line profiles has allowed them to isolate such symmetries and has led to reliable kinematic deprojections.
Document ID
19910004836
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Cecil, Gerald
(Princeton Univ. NJ, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1990
Publication Information
Publication: NASA, Ames Research Center, The Interstellar Medium in External Galaxies: Summaries of Contributed Papers
Subject Category
Astrophysics
Accession Number
91N14149
Funding Number(s)
CONTRACT_GRANT: NAS8-32902
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available