NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Martian polar caps: Stability and water transport at low obliquitiesThe seasonal cycle of water on Mars is regulated by the two polar caps. In the winter hemisphere, the seasonal CO2 deposits at a temperature near 150 K acts as a cold trap to remove water vapor from the atmosphere. When summer returns, water is pumped back into the atmosphere by a number of mechanisms, including release from the receding CO2 frost, diffusion from the polar regolith, and sublimation from a water-ice residual cap. These processes drive an exchange of water vapor between the polar caps that helps shape the Martian climate. Thus, understanding the behavior of the polar caps is important for interpreting the Martian climate both now and at other epochs. Mars' obliquity undergoes large variations over large time scales. As the obliquity decreases, the poles receive less solar energy so that more CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 caps might form at the poles in response to a feedback mechanism existing between the polar cap albedo, the CO2 pressure, and the dust storm frequency. The year-round presence of the CO2 deposits would effectively dry out the atmosphere, while diffusion of water from the regolith would be the only source of water vapor to the atmosphere. We have reviewed the CO2 balance at low obliquity taking into account the asymmetries which make the north and south hemispheres different. Our analysis linked with a numerical model of the polar caps leads us to believe that one summertime cap will always lose its CO2 cover during a Martian year, although we cannot predict which cap this will be. We conclude that significant amounts of water vapor will sublime from the exposed cap during summer, and the Martian atmosphere will support an active water cycle even at low obliquity.
Document ID
19920019780
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Henderson, B. G.
(Colorado Univ. Boulder, CO, United States)
Jakosky, B. M.
(Colorado Univ. Boulder, CO, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: Lunar and Planetary Inst., Workshop on the Martian Surface and Atmosphere Through Time
Subject Category
Lunar And Planetary Exploration
Accession Number
92N29023
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available