NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Direct numerical simulations of stably-stratified sheared turbulence: Implications for oceanic mixingDirect numerical simulations of the time evolution of homogeneous stably stratified turbulent shear flows have been performed for several Richardson numbers Ri and Reynolds numbers R(sub lambda) in earlier works. The results show excellent agreement with length scale models developed from laboratory experiments to characterize oceanic turbulence. When the Richardson number Ri is less than the stationary value Ri(sub s), the turbulence intensity grows at all scales, and the growth rate appears to be a function of Ri. The size of the vertical density inversions also increases. On the other hand, when Ri is greater than or equal to Ri(sub s) the largest turbulent eddies become vertically constrained by buoyancy when the Ellison (turbulence) scale L(sub E) and the Ozmidov (buoyancy) scale L(sub O) are equal. At this point, the mixing efficiency is maximal and corresponds to a flux Richardson number R(sub f) = 0.20. The vertical mass flux becomes counter-gradient when epsilon = 19(nu)N(exp 2) and vertical density overturns are suppressed in less than half a Brunt-Vaisala period. The results of the simulations were also recast in terms of the Hydrodynamic Phase Diagram introduced in fossil turbulence models. The so-called point of fossilization occurs when epsilon = 4DCN(exp 2); Gibson proposed 13DCN(exp 2). This value is in agreement with indirect laboratory observations and field observations. Finally, the validity of the steady-state models to estimate vertical eddy diffusivities in the oceanic thermocline is discussed.
Document ID
19920021415
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Itsweire, E. C.
(Johns Hopkins Univ. Baltimore, MD, United States)
Holt, S. E.
(Stanford Univ. CA., United States)
Koseff, J. R.
(Stanford Univ. CA., United States)
Ferziger, J. H.
(Stanford Univ. CA., United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1990
Publication Information
Publication: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 3: Proceedings of the 1990 Summer Program
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
92N30659
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available