NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Combustion instability analysis for liquid propellant rocket enginesThe multi-dimensional numerical model has been developed to analyze the nonlinear combustion instabilities in liquid-fueled engines. The present pressure-based approach can handle the implicit pressure-velocity coupling in a non-iterative way. The additional scalar conservation equations for the chemical species, the energy, and the turbulent transport quantities can be handled by the same predictor-corrector sequences. This method is time-accurate and it can be applicable to the all-speed, transient, multi-phase, and reacting flows. Special emphasis is given to the acoustic/vaporization interaction which may act as the crucial rate-controlling mechanism in the liquid-fueled rocket engines. The subcritical vaporization is modeled to account for the effects of variable thermophysical properties, non-unitary Lewis number in the gas-film, the Stefan flow effect, and the effect of transient liquid heating. The test cases include the one-dimenisonal fast transient non-reacting and reacting flows, and the multi-dimensional combustion instabilities encountered in the liquid-fueled rocket thrust chamber. The present numerical model successfully demonstrated the capability to simulate the fast transient spray-combusting flows in terms of the limiting-cycle amplitude phenomena, correspondence between combustion and acoustics, and the steep-fronted wave and flame propagation. The investigated parameters include the spray initial conditions, air-fuel mixture ratios, and the engine geometry. Stable and unstable operating conditions are found for the liquid-fueled combustors. Under certain conditions, the limiting cycle behavior of the combusting flowfields is obtained. The numerical results indicate that the spray vaporization processes play an important role in releasing thermal energy and driving the combustion instability.
Document ID
19920023053
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Kim, Y. M.
(Alabama Univ. Huntsville, AL, United States)
Chen, C. P.
(Alabama Univ. Huntsville, AL, United States)
Ziebarth, J. P.
(Alabama Univ. Huntsville, AL, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1992
Publication Information
Publication: NASA. Goddard Space Flight Center, Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1
Subject Category
Inorganic And Physical Chemistry
Accession Number
92N32297
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available