Zeolite crystal growth in spaceThe growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.
Document ID
19920030252
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Sacco, Albert, Jr. (Worcester Polytechnic Inst. MA, United States)
Thompson, Robert W. (Worcester Polytechnic Inst. MA, United States)
Dixon, Anthony G. (Worcester Polytechnic Institute, MA, United States)