NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The nonlinear bending response of thin-walled laminated composite cylindersThe geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.
Document ID
19920051660
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Fuchs, Hannes P.
(NASA Langley Research Center Hampton, VA, United States)
Hyer, Michael W.
(Virginia Polytechnic Institute and State University Blacksburg, United States)
Date Acquired
August 15, 2013
Publication Date
January 1, 1992
Subject Category
Structural Mechanics
Report/Patent Number
AIAA PAPER 92-2230
Meeting Information
Meeting: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Location: Dallas, TX
Country: United States
Start Date: April 13, 1992
End Date: April 15, 1992
Accession Number
92A34284
Funding Number(s)
CONTRACT_GRANT: NAG1-343
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available