NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The influence of bulges on boundary-layer instabilityLocal disturbances caused by a spanwise surface corrugation affect the position of the boundary-layer transition, and so the drag, of an object. This premature transition from laminar to turbulent flow is often associated with a separation of the laminar boundary-layer from its surface. Also the roughness-induced separation bubble provides an important link between the pressure and velocity fluctuations in the environment and the development of the disturbance in the laminar boundary-layer, i.e., the receptivity problem. To investigate the influence of a laminar separation bubble on boundary-layer instability, a separated flow generated by a velocity gradient over a flat plate was analyzed by direct numerical simulation using finite-difference solutions of the Navier-Stokes equations. The bubble acts as a strong amplifier of the instability waves and a highly nonlinear flow field is shown to develop downstream of the bubble. Consequently, the results of the direct numerical simulation differ noticeably from those of the classical linear stability theory proving the fact that the nonparallel effects together with the nonlinear interactions are crucial to this flow development. In the present paper, the effect of physical perturbations such as humps and hollows on boundary-layer instability is analyzed. This problem has been considered theoretically by several researchers (e.g., Nayfeh et al., 1987 and 1990; Cebeci et al., 1988). They used linear stability theory in their approach which does not include the nonparallel nor the nonlinear effects. Therefore, to account for these important effects in studying flow over humps and hollows the direct simulation technique is being implemented in generalized coordinates.
Document ID
19930018246
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Elli, S.
(California Univ. Davis, CA, United States)
Vandam, C. P.
(California Univ. Davis, CA, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: California State Univ., The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
93N27435
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available