NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Use of particle beams for lunar prospectingA key issue in choosing the appropriate site for a manned lunar base is the availability of resources, particularly oxygen and hydrogen for the production of water, and ores for the production of fuels and building materials. NASA has proposed two Lunar Scout missions that would orbit the Moon and use, among other instruments, a hard X-ray spectrometer, a neutron spectrometer, and a Ge gamma ray spectrometer to map the lunar surface. This passive instrumentation will have low resolution (tens of kilometers) due to the low signal levels produced by natural radioactivity and the interaction of cosmic rays and the solar wind with the lunar surface. This paper presents the results of a concept definition effort for a neutral particle beam lunar mapper probe. The idea of using particle beam probes to survey asteroids was first proposed by Sagdeev et al., and an ion beam device was fielded on the 1988 Soviet probe to the Mars moon Phobos. During the past five years, significant advances in the technology of neutral particle beams (NPB) have led to a suborbital flight of a neutral hydrogen beam device in the SDIO-sponsored BEAR experiment. An orbital experiment, the Neutral Particle Beam Far Field Optics Experiment (NPB-FOX) is presently in the preliminary design phase. The development of NPB accelerators that are space-operable leads one to consider the utility of these devices for probing the surface of the Moon using gamma ray, X-ray, and optical/UV spectroscopy to locate various elements and compounds. We consider the utility of the NPB-FOX satellite containing a 5-MeV particle beam accelerator as a probe in lunar orbit. Irradiation of the lunar surface by the particle beam will induce secondary and back scattered radiation from the lunar surface to be detected by a sensor that may be co-orbital with or on the particle beam satellite platform, or may be in a separate orbit. The secondary radiation is characteristic of the make-up of the lunar surface. The size of the spot irradiated by the beam is less than 1 km wide along the ground track of the satellite, resulting in the potential for high resolution. The fact that the probe could be placed in polar orbit would result in global coverage of the lunar surface. The orbital particle beam probe could provide the basis for selection of sites for more detailed prospecting by surface rovers.
Document ID
19930019633
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Toepfer, A. J.
(Science Applications International Corp. Albuquerque, NM, United States)
Eppler, D.
(Science Applications International Corp. Albuquerque, NM, United States)
Friedlander, A.
(Science Applications International Corp. Albuquerque, NM, United States)
Weitz, R.
(Science Applications International Corp. Albuquerque, NM, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Workshop on Advanced Technologies for Planetary Instruments, Part 1
Subject Category
Lunar And Planetary Exploration
Accession Number
93N28822
Funding Number(s)
CONTRACT_GRANT: DASG60-90-C-0103
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available