NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Lunar rovers and local positioning systemTelerobotic rovers equipped with adequate actuators and sensors are clearly necessary for extraterrestrial construction. They will be employed as substitutes for humans, to perform jobs like surveying, sensing, signaling, manipulating, and the handling of small materials. Important design criteria for these rovers include versatility and robustness. They must be easily programmed and reprogrammed to perform a wide variety of different functions, and they must be robust so that construction work will not be jeopardized by parts failures. The key qualities and functions necessary for these rovers to achieve the required versatility and robustness are modularity, redundancy, and coordination. Three robotic rovers are being built by CSC as a test bed to implement the concepts of modularity and coordination. The specific goal of the design and construction of these robots is to demonstrate the software modularity and multirobot control algorithms required for the physical manipulation of constructible elements. Each rover consists of a transporter platform, bus manager, simple manipulator, and positioning receivers. These robots will be controlled from a central control console via a radio-frequency local area network (LAN). To date, one prototype transporter platform frame was built with batteries, motors, a prototype single-motor controller, and two prototype internal LAN boards. Software modules were developed in C language for monitor functions, i/o, and parallel port usage in each computer board. Also completed are the fabrication of half of the required number of computer boards, the procurement of 19.2 Kbaud RF modems for inter-robot communications, and the simulation of processing requirements for positioning receivers. In addition to the robotic platform, the fabrication of a local positioning system based on infrared signals is nearly completed. This positioning system will make the rovers into a moving reference system capable of performing site surveys. In addition, a four degree mechanical manipulator especially suited for coordinated teleoperation was conceptually designed and is currently being analyzed. This manipulator will be integrated into the rovers as their end effector. Twenty internal LAN cards fabricated by a commercial firm are being used, a prototype manipulator and a range finder for a positioning system were built, a prototype two-motor controller was designed, and one of the robots is performing its first telerobotic motion. In addition, the robots' internal LAN's were coordinated and tested, hardware design upgrades based on fabrication and fit experience were completed, and the positioning system is running. The rover system is able to perform simple tasks such as sensing and signaling; coordination systems which allow construction tasks to begin were established, and soon coordinated teams of robots in the laboratory will be able to manipulate common objects.
Document ID
19930019930
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Avery, James
(Colorado Univ. Boulder, CO, United States)
Su, Renjeng
(Colorado Univ. Boulder, CO, United States)
Date Acquired
September 6, 2013
Publication Date
November 1, 1991
Publication Information
Publication: Space Construction Activities
Subject Category
Mechanical Engineering
Accession Number
93N29119
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available