NTRS - NASA Technical Reports Server

Back to Results
Development of a structural optimization capability for the aeroelastic tailoring of composite rotor blades with straight and swept tipsThis paper describes the development of a new structural optimization capability aimed at the aeroelastic tailoring of composite rotor blades with straight and swept tips. The primary objective is to reduce vibration levels in forward flight without diminishing the aeroelastic stability margins of the blade. In the course of this research activity a number of complicated tasks have been addressed: (1) development of a new, aeroelastic stability and response analysis; (2) formulation of a new comprehensive sensitive analysis, which facilitates the generation of the appropriate approximations for the objective and the constraints; (3) physical understanding of the new model and, in particular, determination of its potential for aeroelastic tailoring, and (4) combination of the newly developed analysis capability, the sensitivity derivatives and the optimizer into a comprehensive optimization capability. The first three tasks have been completed and the fourth task is in progress.
Document ID
Document Type
Conference Paper
Friedmann, P. P.
(NASA Langley Research Center Hampton, VA, United States)
Venkatesan, C.
(NASA Langley Research Center Hampton, VA, United States)
Yuan, K.
(California Univ. Los Angeles, United States)
Date Acquired
August 15, 2013
Publication Date
January 1, 1992
Publication Information
Publication: In: AIAA(USAF)NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, 4th, Cleveland, OH, Sept. 21-23, 1992, Technical Papers. Pt. 2 (A93-20301 06-66)
Publisher: American Institute of Aeronautics and Astronautics
Subject Category
Aircraft Design, Testing And Performance
Report/Patent Number
AIAA PAPER 92-4779
Accession Number
Funding Number(s)
Distribution Limits

Available Downloads

There are no available downloads for this record.
No Preview Available