NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Flux-Based Finite Volume representations for general thermal problemsFlux-Based Finite Volume (FV) element representations for general thermal problems are given in conjunction with a generalized trapezoidal gamma-T family of algorithms, formulated following the spirit of what we term as the Lax-Wendroff based FV formulations. The new flux-based representations introduced offer an improved physical interpretation of the problem along with computationally convenient and attractive features. The space and time discretization emanate from a conservation form of the governing equation for thermal problems, and in conjunction with the flux-based element representations give rise to a physically improved and locally conservative numerical formulations. The present representations seek to involve improved locally conservative properties, improved physical representations and computational features; these are based on a 2D, bilinear FV element and can be extended for other cases. Time discretization based on a gamma-T family of algorithms in the spirit of a Lax-Wendroff based FV formulations are employed. Numerical examples involving linear/nonlinear steady and transient situations are shown to demonstrate the applicability of the present representations for thermal analysis situations.
Document ID
19930062519
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Mohan, Ram V.
(NASA Lyndon B. Johnson Space Center Houston, TX, United States)
Tamma, Kumar K.
(Minnesota Univ. Minneapolis, United States)
Date Acquired
August 16, 2013
Publication Date
July 1, 1993
Subject Category
Fluid Mechanics And Heat Transfer
Report/Patent Number
AIAA PAPER 93-2770
Meeting Information
Meeting: AIAA, Thermophysics Conference
Location: Orlando, FL
Country: United States
Start Date: July 6, 1993
End Date: July 9, 1993
Sponsors: AIAA
Accession Number
93A46516
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available