NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effect of heat release on the stability of compressible reacting mixing layerReacting free shear layers are of fundamental importance in many industrial systems including gas turbine combustors and rockets. Efficient propulsion systems are essential for air breathing supersonic ramjets in the high Mach number range. A limiting factor in these engines is the time for fuel and oxidizer to mix in the combustion chamber; for fast mixing, the flow must be vigorously turbulent which requires the laminar flow to be unstable. Understanding the stability characteristics of compressible reacting free shear layers is, therefore, very important and may allow one to control the flow. Low speed shear layers are highly unstable but, as chemical reaction and compressibility effects tend to stabilize them, it is important to investigate the stability of high speed reacting mixing layers. The latter consists of two fluid streams containing fuel and oxidizer respectively, and the conclusions are expected to apply, with quantitative modifications, to other shear flows, e.g., jets. Since low speed reacting cases have been studied earlier, we concentrate on the effects of Mach number and heat release. We are primarily interested in solving the stability problem over a large range of Mach number and heat release. In order to understand the effect of the heat release on the stability of this flow, one must first study the characteristics of the non-reacting flow. Inviscid theory is a reliable guide for understanding stability of compressible shear flows at moderate and large Reynolds numbers and is the basis for this work.
Document ID
19930074005
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Shin, Dong-Shin
(Stanford Univ. CA, United States)
Ferziger, J. H.
(Stanford Univ. CA, United States)
Date Acquired
August 16, 2013
Publication Date
February 1, 1991
Publication Information
Publication: Annual Research Briefs, 1990
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
93N71452
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available