NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Shape optimization for maximum stability and dynamic stiffnessAny optimization of structures for maximum stability or for maximum dynamic stiffness deals with an eigenvalue problem. The goal of this optimization is to raise the lowest eigenvalue (or eigenvalues) of the problem to its highest (optimal) level at a constant volume of the structure. Likely the lowest eigenvalue may be either inherently multi-modal or it can become multi-modal as a result of the optimization process. The multimodeness introduces some ambiguity to the eigenvalue problem and make the optimization difficult to handle. Thus far, only the simplest cases of multi-modal structures have been effectively optimized using rather elaborate analytical methods. Numerous publications report design of a minimum volume structure with different eigenvalues constraints, in which, however, the modality of the problem is assumed a priori. The method presented here utilizes a multi-modal optimality criteria and allows for inclusion of an arbitrary number of buckling or vibrations modes which might influence the optimization process. The real multi-modality of the problem, that is the number of modes participating in the final optimal design is determined iteratively. Because of a natural use of the FEM technique the method is easy to program and might be helpful in design of large flexible space structures.
Document ID
19940004701
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Szyszkowski, W.
(Saskatchewan Univ. Saskatoon Saskatchewan, Canada)
Date Acquired
August 16, 2013
Publication Date
January 1, 1990
Publication Information
Publication: NASA. Langley Research Center, The Third Air Force(NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization
Subject Category
Structural Mechanics
Accession Number
94N71456
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available