NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Peroxy radical measurements with NCAR's chemical amplifierThe present NCAR instrument for HO2/RO2 measurements has been described previously. It is based on the reactions involving HO2, RO2, and HO radicals with CO and NO. Since (HO2) + (RO2) + (HO) is much greater than (HO) for most atmospheres, it is useful as a peroxy radical detector. Operation of the instrument depends on the creation of a chemical chain reaction which is initiated as HO2 and RO2 radicals in ambient air encounter added NO gas; this forms an NO2 molecule and an HO or RO radical: HO2(RO2) + NO yields HO(RO) + NO2. RO radicals react relatively efficiently with O2 to form an HO2 radical, and subsequently an HO-radical, by reaction with NO. CO gas added to the reaction chamber during part of the operating cycle, recycles the HO to HO2; HO + CO (+O2) yields HO2 + CO2. The reaction sequence may form several hundred NO2 molecules per HO2 (RO2) originally present, before chain termination occurs. The added CO is replaced by N2 addition periodically so that the chain reaction is suppressed, and a 'blank' signal resulting from NO2, O3 and possibly other NO2-forming species (non-chain processes) in ambient air is recorded. The difference between the signal with and without CO is proportional to the peroxy radical concentration. The NO2 produced is monitored using a sensitive luminol chemiluminescence detector system. In the NCAR instrument the length of the amplification chain is determined using a stable source of HO2 radicals (H2O2 thermal decomposition); the ratio of the signal seen with CO present to that with N2 present gives the sensitivity of the instrument to HO2 (molecules of NO2 formed/peroxy radical). The instrument is automated to carry out in hourly repeated cycles: (1) chain length determination; (2) NO2 calibration; and (3) linearity check on the response of signals. One minute averages of signals are normally recorded. The sensitivity of the instrument to detect peroxy radicals is in the pptv range. The present instrument has operated continuously (24 hr/day) in the field studies which extended over a period of several weeks. The major advantages of this instrument are as follows: (1) its relative simplicity; (2) low power requirements; and (3) its rapid response to all types of peroxy radicals--HO2, CH3O2 and the higher alkyl and acyl peroxy radicals; however not all RO2 species generate HO2 radicals with perfect efficiency and hence have somewhat lower response/molecule than HO2 radicals.
Document ID
19940024100
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Cantrell, Christopher
(National Center for Atmospheric Research Boulder, CO, United States)
Shetter, Richard
(National Center for Atmospheric Research Boulder, CO, United States)
Calvert, Jack G.
(National Center for Atmospheric Research Boulder, CO, United States)
Date Acquired
September 6, 2013
Publication Date
February 1, 1994
Publication Information
Publication: SRI International Corp., Local Measurement of Tropospheric HO(x)
Subject Category
Environment Pollution
Accession Number
94N28603
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available