NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Fuzzy logic, neural networks, and soft computingThe past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial intelligence. In the years ahead, this may well become a widely held position.
Document ID
19940029542
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Zadeh, Lofti A.
(California Univ. Berkeley, CA, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1994
Publication Information
Publication: NASA. Johnson Space Center, The Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), Volume 1
Subject Category
Cybernetics
Accession Number
94N34048
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available