NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Sub-ply level scaling approach investigated for graphite-epoxy composite beam columnsScale model graphite-epoxy composite specimens were fabricated using the 'sub-ply level' approach and tested as beam-columns under an eccentric axial load to determine the effect of specimen size on flexural response and failure. In the current research project, although the fiber diameters are not scaled, the thickness of the pre-preg material itself has been scaled by adjusting the number of fibers through the thickness of a single ply. Three different grades of graphite-epoxy composite material (AS4/3502) were obtained from Hercules, Inc., in which the number of fibers through the thickness of a single ply was reduced (Grade 190 with 12 to 16 fibers, Grade 95 with 6 to 8 fibers, and Grade 48 with 3 to 4 fibers). Thus, using the sub-ply level approach, a baseline eight ply quasi-isotropic laminate could be fabricated using either the Grade 48 or Grade 95 material and the corresponding full-scale laminate would be constructed from Grade 95 or standard Grade 190 material, respectively. Note that in the sub-ply level approach, the number of ply interfaces is constant for the baseline and full-scale laminates. This is not true for the ply level and sublaminate level scaled specimens. The three grades of graphite-epoxy composite material were used to fabricate scale model beam-column specimens with in-plane dimensions of 0.5*n x 5.75*n, where n=1,2,4 corresponsing to 1/4, 1/2, and full-scale factors. Angle ply, cross ply, and quasi-isotropic laminate stacking sequences were chosen for the investigation and the test matrices for each laminate type are given. Specimens in each laminate family with the same in-plane dimensions but different thicknesses were tested to isolate the influence of the thickness dimension on the flexural response and failure. Also, specific lay-ups were chosen with blocked plies and dispersed plies for each laminate type. Specimens were subjected to an eccentric axial load until failure. The load offset was introduced through a set of hinges which were attached to the platens of a standard load test machine. Three sets of geometrically scaled hinges were used to ensure that scaled loading conditions were applied. This loading condition was chosen because it promotes large flexural deformations and specimens fail at the center of the beam, away from the grip supports. Five channels of data including applied vertical load, end shortening displacement, strain from gages applied back-to-back at the midspan of the beam, and rotation of the hinge from a bubble inclinometer were recorded for each specimen. The beam-column test configuration was used previously to study size effects in ply level scaled composite specimens of the same material system, sizes, and stacking sequences. Thus, a direct comparison between the two scaling approaches is possible. Ply level scaled beam-columns with angle ply, cross ply, and quasi-isotropic lay-ups exhibited no size dependencies in the flexural response, but significant size effects in strength. The reduction in strength with increasing specimen size was not predicted successfully by analysis techniques. It is anticipated that results from this investigation will lead to a better understanding of the strength scale effect in composite structures.
Document ID
19940033287
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Jackson, Karen E.
(Army Vehicle Structures Lab. Hampton, VA, United States)
Kellas, Sotiris
(Army Vehicle Structures Lab. Hampton, VA, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1994
Publication Information
Publication: NASA. Langley Research Center, Workshop on Scaling Effects in Composite Materials and Structures
Subject Category
Structural Mechanics
Accession Number
94N37798
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available