NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Transportation of volatile elements in thermally evolving planetesimals: An important role of metallic ironOrdinary chondrites are considered to have experienced thermal metamorphism in small bodies. We are interested in behaviors of volatile elements in such a kind of thermally evolving planetesimals. Volatile elements generally have high vapor pressures at high temperature. In porous bodies, with a high gas permeability, volatile elements are transported efficiently over a long range. Behavior of volatile elements transported by permeable gas flow can be handled by an equation whose form is similar to that of the equation of thermal diffusion. We can follow transportation of heats and volatile elements in planetesimals, when parameters in these equations, initial conditions and chemical behavior of volatile elements are given. Recently, we discovered that nitrogen in equilibrated H-chondrites is mainly trapped in taenite (f.c.c. Fe-Ni), probably dissolved in interstitial sites. Fegley suggests that metallic iron cannot trap nitrogen in the solar nebula gas due to its very low nitrogen partial pressure. Approximately 1 bar of nitrogen pressure is required to explain the nitrogen content in taenite. We may expect high nitrogen gas partial pressure (possibly produced by vaporization of nitrogen-bearing solids such as organic materials) at the interior of thermally evolving planetesimals. Kinetic behavior of nitrogen in taenite suggests that it can easily be equilibrated with the ambient nitrogen gas at temperatures of approximately 500 C or higher. We consider that nitrogen is trapped in taenite through a nitrogen redistribution process occurred during the thermal metamorphic event.
Document ID
19950015373
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Hashizume, K.
(Osaka Univ. Toyonaka, Japan)
Sugiura, N.
(Tokyo Univ. Japan)
Date Acquired
September 6, 2013
Publication Date
January 1, 1994
Publication Information
Publication: Lunar and Planetary Inst., Conference on Deep Earth and Planetary Volatiles
Subject Category
Astrophysics
Accession Number
95N21790
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available