NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Water abundance and accretion history of terrestrial planetsAccording to a widespread believe, Earth's water was either added in form of a late volatile-rich veneer or as we have argued repeatedly that of all the water which was added to the Earth only that portion remained which was added towards the end of accretion when the mean oxygen fugacity of the accreting material became so high that metallic iron could not exist any longer. Prior to this moment, all the water in the latter scenario would have been used up for the oxidation of iron. Fe + H2O yields FeO + H2. Huge quantities of hydrogen would continuously be produced in this scenario which escaped. In the same moment the hydrogen on its way to the surface would lead to an efficient degassing of the growing Earth's mantle. The fact that - assuming C1 abundances - the amount of iridium in the Earth's mantle agrees, within a factor of two with the total water inventory of the Earth's mantle and crust is taken as evidence for the validity of such a scenario. In both scenarios, the Earth's mantle would remain dry and devoid of other volatiles. Some species soluble in metallic iron like carbon and hydrogen will probably partly enter the core in some portions. It is generally assumed that today a considerable portion of the earth's total water inventory resides in the mantle. It is also clear that over the history of the Earth the water of the Earth's oceans has been recycled many times through the mantle. This is the consequence of plate subduction. In a similar way mantle convection was probably responsible to being water into the originally dry mantle. As a consequence, today the Earth is wet both inside and outside.
Document ID
19950015403
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Waenke, H.
(Max-Planck-Inst. fuer Chemie Mainz, Germany)
Dreibus, G.
(Max-Planck-Inst. fuer Chemie Mainz, Germany)
Date Acquired
September 6, 2013
Publication Date
January 1, 1994
Publication Information
Publication: Lunar and Planetary Inst., Conference on Deep Earth and Planetary Volatiles
Subject Category
Geophysics
Accession Number
95N21820
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available