NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Experimental and numerical study of the intermittency exponent muAfter publication of the Kolmogorov refined similarity hypotheses, the small-scale intermittency of the energy dissipation field became a central problem in fully developed turbulence (FDT). This phenomenon has been studied in many different ways, e.g. by searching for corrections to scaling exponents in the inertial range velocity structure functions. A direct measure of this intermittency is, however, available by studying the local rate of energy dissipation, and it may be quantitatively characterized by the intermittency exponent mu. As far as we know, nobody has posed an obvious question: Is the intermittency exponent mu a unique constant, i.e., are the values mu(sub kappa), mu(sub epsilon), mu(sub r), mu(sub b), and mu(sub e) the same at high Reynolds numbers, or do they create a set of different (and perhaps independent) exponents? This paper addresses the above question using the high Reynolds number experiments.
Document ID
19950016041
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Praskovsky, Alexander
(Stanford Univ. CA, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1994
Publication Information
Publication: Annual Research Briefs, 1994
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
95N22458
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available