NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Reduction technique for tire contact problemsA reduction technique and a computational procedure are presented for predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of the reduction technique, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface.
Document ID
19950019857
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Noor, Ahmed K.
(Virginia Univ. Hampton, VA, United States)
Peters, Jeanne M.
(Virginia Univ. Hampton, VA, United States)
Date Acquired
September 6, 2013
Publication Date
April 1, 1995
Publication Information
Publication: Center for Computational Structures Technology
Subject Category
Structural Mechanics
Accession Number
95N26277
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available