NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Understanding the relation between wind- and pressure-driven sea level variabilitySea surface adjustment to combined wind and pressure forcing is examined using numerical solutions to the shallow water equations. The experiments use coastal geometry and bottom topography representative of the North Atlantic and are forced by realistic barometric pressure and wind stress fields. The repsonse to pressure is essentially static or close to the inverted barometer solution at periods longer than a few days and dominates the sea level variability, with wind-driven sea level signals being relatively small. With regard to the dynamic signals, wind-driven fluctuations dominate at long periods, as expected from quasi-geostrophic theory. Pressure becomes more important than wind stress as a source of dynamic signals only at periods shorter than approximately three days. Wind- and pressure-driven sea level fluctuations are anticorrelated over most regions. Hence, regressions of sea level on barometric pressure yield coefficients generally smaller than expected for the inverted barometer response known to be the case in the model. In the regions of significant wind-pressure correlation effects, to infer the correct pressure reponse using statistical methods, input fields must include winds as well as pressure. Because of the nonlocal character of the wind response, multivariate statistical models with local wind driving as input are not very successful. Inclusion of nonlocal wind variability over extensive regions is necessary to extract the correct pressure response. Implications of these results to the interpretation of sea level observations are discussed.
Document ID
19950029657
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Ponte, Rui M.
(Atmospheric and Environmental Research, Inc. Cambridge, MA, United States)
Date Acquired
August 16, 2013
Publication Date
April 15, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: C4
ISSN: 0148-0227
Subject Category
Oceanography
Accession Number
95A61256
Funding Number(s)
CONTRACT_GRANT: NASW-4713
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available