NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Global shortwave energy budget at the earth's surface from ERBE observationsA method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiment (ERBE) data in the S4 format. The S4 data are monthly averaged broadband planetary albedo collected at selected times during the day. Net surface shortwave irradiance is obtained from the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used, which makes the method easily applicable and computationally efficient. Four surface types are distinguished, namely, ocean, vegetation, desert, and snow/ice. Over the tropical Pacific Ocean, the estimates based on ERBE data compare well with those obtained from International Satellite Cloud Climatology Project (ISCCP) B3 data. For the 9 months analyzed the linear correlation coefficient and the standard difference between the two datasets are 0.95 and 14 W/sq m (about 6% of the average shortwave irradiance), respectively, and the bias is 15 W/sq m (higher ERBE values). The bias, a strong function of ISCCP satellite viewing zenith angle, is mostly in the ISCCP-based estimates. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model, which accounts crudely for multiple reflection between the surface and clouds, may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. As found in other studies, our values are generally higher than Esbensen and Kushnir's by as much as 80 W/sq m in the tropical oceans. A cloud parameter, defined as the difference between clear-sky and actual irradiances normalized to top-of-atmosphere clear-sky irradiance, is also examined. This parameter, minimally affected by sun zenith angle, is higher in the midlatitude regions of storm tracks than in the intertropical convergence zone (ITCZ), suggesting that, on average, the higher cloud coverage in midlatitudes is more effective at reducing surface shortwave irradiance than opaque, convective, yet sparser clouds in the ITCZ. Surface albedo estimates are realistic, generally not exceeding 0.06 in the ocean, as high as 0.9 in polar regions, and reaching 0.5 in the Sahara and Arabian deserts.
Document ID
19950032434
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Breon, Francois-Marie
(Scripps Institute of Oceanography, La Jolla, CA United States)
Frouin, Robert
(Univ. of California, Santa Barbara, CA United States)
Date Acquired
August 16, 2013
Publication Date
February 1, 1994
Publication Information
Publication: Journal of Climate
Volume: 7
Issue: 2
ISSN: 0894-8755
Subject Category
Meteorology And Climatology
Accession Number
95A64033
Funding Number(s)
CONTRACT_GRANT: NOAA-NA-86AADAC051
CONTRACT_GRANT: NOAA-NA-16RC0524
CONTRACT_GRANT: NAG5-236
CONTRACT_GRANT: NSF ATM-84-13953
CONTRACT_GRANT: NAGW-2694
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available