NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Quasi-biennial oscillations of ozone and diabatic circulation in the equatorial stratosphereThe quasi-biennial oscillation (QBO) in ozone in the equatorial stratosphere is obtained by analyzing the Stratospheric Aerosol and Gas Experiment (SAGE) data from 1984 to 1989. The phase of the ozone QBO in the lower stratosphere is found to precede the zonal wind QBO by several months as opposed to the theoretically expected in-phase relationship between the two. A mechanistic model is developed to explore possible reasons for this disagreement. The model is capable of simulating the actual time evolution of the ozone QBO by introducing the observed zonal wind profile as input. The modeled results confirm the conventional view that the ozone QBO is generated by the vertical ozone advection that is driven to maintain the temperature structure against radiative damping. However, a series of experiments emphasizes the importance of the feedback of the ozone QBO to the diabatic heating through the absorption of solar radiation. Due to this effect, the phase of the ozone QBO shifts up to a quarter cycle ahead and approaches that of the temperature QBO. Because of this inphase relationship, the feedback of the ozone QBO to the diabatic heating acts to compensate for the radiative damping of the temperature structure, thus reducing the magnitude of the induced diabatic circulation. Because the reduction of the magnitude of the vertical motion facilitates downward transport of easterly momentum by the mean flow, this feedback process can help to resolve the insufficiency of the easterly momentum in driving the dynamical QBO in general circulation models (GCMs). It should be emphasized that more sophisticated models that allow for full interaction between the chemical species and radiative and dynamical processes should be developed to improve our understanding of both dynamical and ozone QBOs.
Document ID
19950033277
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Hasebe, Fumio
(State Univ. of New York, Stony Brook, NY, United States)
Date Acquired
August 16, 2013
Publication Date
March 1, 1994
Publication Information
Publication: Journal of the Atmospheric Sciences
Volume: 51
Issue: 5
ISSN: 0022-4928
Subject Category
Meteorology And Climatology
Accession Number
95A64876
Funding Number(s)
CONTRACT_GRANT: NAS5-31247
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available