NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Carbonates and sulfates in the Chassigny meteorite: Further evidence for aqueous chemistry on the SNC parent planetScanning electron microscopy and energy-dispersive X-ray spectrometry of untreated interior chips from three different specimens of the Chassigny meteorite confirm the presence of discrete grains of Ca-carbonate, Mg-carbonate, and Ca-sulfate. Morphologies of these salt grains suggest that the Ca-carbonate is calcite (CaCO3) and that the Ca-sulfate is gypsum (CaSO4-2H2O) or bassanite (CaSO4-1/2H2O). The morphologic identification of the Mg-carbonate is equivocal, but rhombohedral and acicular crystal habits suggest magnesite and hydromagnesite, respectively. The salts in Chassigny occur as discontinuous veins in primary igneous minerals and are similar to those previously documented in the nakhlites, Nakhla and Lafayette, and in shergottite EETA79001. Unlike those in nakhlites, however, the Chassigny salts occur alone, without associated ferric oxides or aluminosilicates clays. Traces of Cl and P in Chassigny salts are consistent with precipitation of the salts from short-lived, saline, aqueous solutions that postdated igneous crystallization. In contrast with the clear case for nakhlites, stratigraphic evidence for a preterrestrial origin of the salts in Chassigny is ambiguous; however, a preterrestrial origin of the Chassigny salts best explains all available evidence. The water-precipitated salts provide clear physical evidence for the hypothesis, proposed by other workers, that the igneous amphiboles in Chassigny might have experienced isotope-exchange reactions with near-surface water, thereby compromising the original stable-isotope signature of any magmatic water in melt inclusions.
Document ID
19950035639
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Wentworth, Susan J.
(Lockheed Engineering and Sciences Co., Houston, TX United States)
Gooding, James L.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 16, 2013
Publication Date
November 1, 1994
Publication Information
Publication: Meteoritics
Volume: 29
Issue: 6
ISSN: 0026-1114
Subject Category
Lunar And Planetary Exploration
Accession Number
95A67238
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available