NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cone structure and focusing of VLF and LF electromagnetic waves at high altitudes in the ionosphereThe frequency and angle dependencies of the electric field radiated by an electric dipole E = E(sub 0) cos omega(t) are studied through numerical calculations of absolute value of E in the VLF and LF frequency bands where F is less than or equal 0.02 to 0.05 f(sub b) in a model ionosphere over an altitude region of 800-6000 km where the wave frequency and electron gyrofrequency varies between F approximately 4-500 kHz and f(sub b) is approximately equal (1.1 to 0.2) MHz respectively. It is found that the amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth magnetic field line B(sub 0) (it is called the axis field E(sub 0), in the Storey E(sub St), reversed Storey E(sub RevSt), and resonance E(sub Res) cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are the most pronounced close to the lower hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, with the apex angles of the cones Delta-B is approximately (0.1-1) deg. The enhancement and focusing of the electric field increases with altitude starting at Z greater than 800 km. At Z greater than or equal to 1000 up to 6000 km, the relative value of absolute value of E, in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus the flux of VLF and LF electromagnetic waves generated at high altitudes in the Earth's ionosphere are trapped into very narrow conical beams similar to laser beams.
Document ID
19950038040
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Alpert, Ya. L.
(Harvard Smithsonian Center for Astrophysics, Cambridge, MA United States)
Green, J. L.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 16, 2013
Publication Date
January 1, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: A1
ISSN: 0148-0227
Subject Category
Geophysics
Accession Number
95A69639
Funding Number(s)
CONTRACT_GRANT: NAG5-1340
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available