NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The massive halos of spiral galaxiesWe use a sample of satellite galaxies to demonstrate the existence of extended massive dark halos around spiral galaxies. Isolated spirals with rotation velocities near 250 km/s have a typical halo mass within 200 kpc of 1.5-2.6 x 10(exp 12) solar mass (90% confidence range for H(sub 0) = 75 km/s/Mpc). This result is most easily derived using standard mass estimator techniques, but such techniques do not account for the strong observational selection effects in the sample, nor for the extended mass distributions that the data imply. These complications can be addressed using scale-free models similar to those previously employed to study binary galaxies. When satellite velocities are assumed isotropic, both methods imply massive and extended halos. However, the derived masses depend sensitively on the assumed shape of satellite orbits. Furthermore, both methods ignore the fact that many of the satellites in the sample have orbital periods comparable to the Hubble time. The orbital phases of such satellites cannot be random, and their distribution in radius cannot be freely adjusted; rather these properties reflect ongoing infall onto the outer halos of their primaries. We use detailed dynamical models for halo formation to evaluate these problems, and we devise a maximum likelihood technique for estimating the parameters of such models from the data. The most strongly constrained parameter is the mass within 200-300 kpc, giving the confidence limits quoted above. The eccentricity, e, of satellite orbits is also strongly constrained, 0.50 less than e less than 0.88 at 90% confidence, implying a near-isotropic distribution of satellite velocities. The cosmic density parameter in the vicinity of our isolated halos exceeds 0.13 at 90% confidence, with preferred values exceeding 0.3.
Document ID
19950038818
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Zaritsky, Dennis
(Univ. of Arizona, Tempe, AZ United States)
White, Simon D. M.
(Univ. of Arizona, Tempe, AZ United States)
Date Acquired
August 16, 2013
Publication Date
November 10, 1994
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 435
Issue: 2
ISSN: 0004-637X
Subject Category
Astronomy
Accession Number
95A70417
Funding Number(s)
CONTRACT_GRANT: NAS5-26555
CONTRACT_GRANT: NSF AST-88-22297
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available