NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbonsWe have theoretically modeled the gas heating associated with the photoelectric ejection of electrons from a size distribution of interstellar carbon grains which extends into the molecular domain. We have considered a wide range of physical conditions for the interstellar gas (1 less than G(sub 0) less than 10(exp 5), with G(sub 0) being the intensity of the incident far-UV field in units of the Habing interstellar radiation field; 2.5 x 10( exp -3) less than n(sub e) less than 75/cu cm, with n(sub e) being the electron density; 10 less than T less than 10,000 K, with T being the gas temperature). The results show that about half of the heating is due to grains less than 1500 C atoms (less than 15 A). The other half originates in somewhat larger grains (1500-4.5 x 10(exp 5) C atoms; 15 less than 100 A). While grains larger than this do absorb about half of the available far-UV photons, they do not contribute appreciably to the gas heating. This strong dependence of gas heating on size results from the decrease in yield and from the increased grain charge (hence larger Coulomb losses) with increasing grain size. We have determined the net photoelectric heating rate and evaluated a simple analytical expression for the heating efficiency, dependent only on G(sub 0), T, and n(sub e). This expression is accurate to 3% over the whole parameter range and is valid up to gas temperatures of 10(exp 4) K, at which point the dominant gas-dust heat exchange mechanism becomes the recombination of electrons with grains rather than photoelectric ejection. The calculated heating efficiency for neutral grains is in good agreement with that derived from observations of the diffuse interstellar clouds. Our results also agree well with the Far Infrared Absolute Spectrometer (FIRAS) observations on the Cosmic Background Explorer Satellite. Finally, our photoelectric heating efficiency is compared to previous studies.
Document ID
19950040609
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Bakes, E. L. O.
(Princeton Univ. Princeton, NJ, United States)
Tielens, A. G. G. M.
(Princeton Univ. Princeton, NJ, United States)
Date Acquired
August 16, 2013
Publication Date
June 1, 1994
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 427
Issue: 2
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A72208
Funding Number(s)
PROJECT: RTOP 399-20-01-30
CONTRACT_GRANT: NAGW-1973
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available