NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Analysis of small-scale microwave background radiation anisotropy in the presence of foreground contaminationMany of the current round of experiments searching for anisotropies in the microwave background radiation (MBR) are confronting the problem of how to disentangle the cosmic signal from contamination due to Galactic and intergalactic foreground sources. Here we show how commonly used likelihood function techniques can be generalized to account for foreground. Specifically we set some restrictions on the spectrum of foreground contamination but allow the amplitude to vary arbitrarily. The likelihood function thus generalized gives reasonable limits on the MBR anisotropy which, in some cases, are not much less restrictive than what one would get from more detailed modeling of the foreground. Furthermore, the likelihood function is exactly the same as one would obtain by simply projecting out foreground contamination and looking at the reduced data set. We apply this generalized analysis to the recent medium-angle data sets of ACME-HEMT (Gaier et al. 1992; Schuster et al. 1993) and MAX (Meinhold et al. 1993; Gunderson et al. 1993). The resulting analysis constrains the one free parameter in the standard cold dark matter theory to be Q(sub rms-ps) = 18(sub -5 sup +8) microKelvin. This best fit value, although in striking agreement with the normalization from Cosmic Background Explorer (COBE), is not a very good fit, with an overall chi-squared/degrees of freedom = 208/168. We also argue against three commonly used methods of dealing with foreground: (1) ignoring it completely; (2) subtracting off a best-fit foreground and treating the residuals as if uncontaminated; and (3) culling data which appears to be contaminated by foreground.
Document ID
19950040844
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Dodelson, Scott
(NASA Fermilab Astrophysics Center Batavia, IL, United States)
Stebbins, Albert
(NASA Fermilab Astrophysics Center Batavia, IL, United States)
Date Acquired
August 16, 2013
Publication Date
October 1, 1994
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 433
Issue: 2
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A72443
Funding Number(s)
CONTRACT_GRANT: NAGW-2381
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available