NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
High-mass X-ray binary populations. 1: Galactic modelingModern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.
Document ID
19950041421
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Dalton, William W.
(Univ. of Virginia, Charlottesville, VA United States)
Sarazin, Craig L.
(Univ. of Virginia, Charlottesville, VA United States)
Date Acquired
August 16, 2013
Publication Date
February 10, 1995
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 440
Issue: 1
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A73020
Funding Number(s)
CONTRACT_GRANT: NAG5-1891
CONTRACT_GRANT: NAGW-2376
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available