NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Aubrite basalt vitrophyres: High sulfur silicate melts and a snapshot of aubrite formationTwo aubrite basalt vitrophyre clasts have been found within AMNH thin sections from the Parsa EH3 chondrite and the Khor Temiki aubrite. Polished sections of the Parsa Aubrite Inclusion (PAI) and the Khor Temiki Inclusion (KTI) were studied by optical, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) techniques with broad-beam and low absorbed EPMA currents used to minimize glass volatile loss. Some data have previously been reported for PAI and KTI may possibly correlate to a previously reported inclusion in Khor Tiimiki. In polished sections, PAI and KTI are approximately equal 4 mm in diameter and contain a large volume of glass. The clasts have similar textural characteristics and are akin to lunar vitrophyre textures. The glasses have high alkali rhyodacitic compositions Al-though PAI is peraluminous, KTI is significantly peralkaline. Additionally, the glasses have elevated sulfur concentrations that are extremely high by geochemical standards. SEM examination for beam overlap of microscopic CaS, FeS, and (Mg, Mn, Fe) S inclusions showed no such contamination. Furthermore, homogeneity of glass S content and low FeO contents help rule out contamination. Materials research data show that under reducing conditions alumino-silicate melts can dissolve up to several weight percent sulfur in the absence of Fe. The high S and alkali contents, the lack of associated high shock features, and the rationalized phase equilibria suggest that PAI and KTI are igneous melting products of an E-chondrite-like source material. Although large-scale impact melting cannot totally be ruled out, the above observations eliminate the possibility of in-situ shock melting.
Document ID
19950042113
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Fogel, R. A.
(American Museum of Natural History, New York, NY US, United States)
Date Acquired
August 16, 2013
Publication Date
July 1, 1994
Publication Information
Publication: Meteoritics
Volume: 29
Issue: 4
ISSN: 0026-1114
Subject Category
Lunar And Planetary Exploration
Accession Number
95A73712
Funding Number(s)
CONTRACT_GRANT: NAGW-2873
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available