NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Temperature and abundances in the Jovian auroral stratosphere. 1: Ethane as a probe of the millibar regionWe report infrared heterodyne spectroscopy (lambda/delta lambda is approximately 10(exp 6)) of C2H6 emission at 11.9 microns from the northern Jovian auroral region, in observations conducted over December 2-7, 1989. Accurately measured line shapes provide information on C2H6 abundance as well as temperature and permit retrieval of the source pressure region. Enhanced emission was observed in the longitude range approximately 150-180 deg at approximately 60 deg north latitude, approximately corresponding to the CH4 7.8 micron hot spot and the region of brightest UV aurora. Significant brightness variations were observed in the hot spot emissions on a time scale of approximately 20 hours. Analysis of the brightest hot spot spectra indicates C2H6 mole fractions of approximately (6.3-6.8) x 10(exp -6) at temperatures of approximately 182-184 K at 1 mbar, compared to mole fractions of (3.8 +/- 1.4) x 10(exp -6) averaged over spectra outside the hot spot at a temperature of approximately 172 K at the same pressure. Fixing the mole fraction to the lower limit retrieved in the quiescent (non-hot spot) region allows the temperature at 1 mbar to be as high as approximately 200 K within the hot spot. These results provide upper limits to the temperature increase near the source of the C2H6 thermal infrared emission. Combined with results from similar measurements of ethylene emission probing the approximately 10-microbar region (Kostiuk et al., this issue), altitude information on the thermal structure of the Jovian auroral stratosphere can be obtained for the first time.
Document ID
19950045587
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Livengood, Timothy A.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Kostiuk, Theodor
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Espenak, Fred
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 16, 2013
Publication Date
October 25, 1993
Publication Information
Publication: Journal of Geophysical Research
Volume: 98
Issue: E10
ISSN: 0148-0227
Subject Category
Lunar And Planetary Exploration
Accession Number
95A77186
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available