NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Blue lobes in the Hydra A cluster central galaxyWe present new U- and I-band images of the centrally dominant galaxy in the Hydra A cluster, obtained with the 2.5 m Isaac Newton Telescope at La Palma. The galaxy is centered in a poor, X-ray-luminous cluster whose gaseous intracluster medium is apparently cooling at a rate of m-dot(sub CF) approximately 3000 solar masses/yr. The galaxy's structure is that of a normal giant elliptical galaxy, apart from the central approximately 8 x 6 arcsec (approximately 12 x 9 kpc) region which contains an unusually blue, lobelike structure that is spatially coincident with a luminous emission-line nebula in rotation about the nucleus. Based on near spatial coincidence of the central continuum structure and the emission-line nebula, we suggest that the blue continuum is due to a warm stellar population in a central disk. In order to isolate and study the structure of the disk, we have subtracted a smooth galactic background model from the U-band image. The disk's surface brightness profiles along its major and minor axes decline roughly exponentially with radius. The disk's axial ratio is consistent with a nearly edge-on thick disk or a thin disk that is inclined with respect to the line of sight. The bluest regions, located a few arcsec on either side of the nucleus (giving the lobelike appearance), may be due to locally enhanced star formation or a seeing-blurred ring of young stars embedded in the disk observed nearly edge-on. If star-formation is occurring with the local initial mass function, the central color, surface brightness, and dynamical mass would be consistent with models for star formation at a rate of less than and approximately 1 solar masses/yr which has persisted for the past approximately 10(exp 9) yr, a short burst (10(exp 7) yr) of star formation at a rate of approximately 30 solar masses/yr which occurred less than and approximately 10(exp 8) yr ago, or an instantaneous burst of star formation which occurred approximately 5 x 10(exp 7) yr ago. While the young population contributes approximately 30%-40% of the central U-band luminosity, its mass would be less than and approximately 1% to less than and approximately 10% (10(exp 8) solar masses - 2 x 10(exp 9) solar masses of the galaxy's central dynamical mass. We consider a number of possible origins for the disk material.
Document ID
19950053573
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Mcnamara, Brian R.
(Center for Astrophysics, Cambridge, MA United States)
Date Acquired
August 16, 2013
Publication Date
October 4, 1995
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 443
Issue: 1
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A85172
Funding Number(s)
CONTRACT_GRANT: NAS8-39073
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available