NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling studyErosional escarpments common features of high-elevation rifted continets. Fission track data suffest that these escarpments form by base level lowering and/or marginal uplift during rifting, followed by lateral retreat of an erosion front across tens to hundreds of kioometers. Previous modeling studies have shown that this characteristic pattern of denudation can have a profound impact upon marginal isostatic uplift and the evolution of offshore sedimentary basins. Yet at present there is only a rudimentary understanding of the geomorphic mechanisms capable of driving such prolonged escarpment retreat. In this study we present a nonlinear, two-dimensional landscape evolution model tha tis used to asses the necessary and sufficient conditions for long-term retreat of a rift-generated escarpment. The model represents topography as a grid of cells, with drainage networkds evolving as water flows across the grid in the direction of steepest descent. The model accounts for sediment production by weathering, fluvial sediment transport, bedrock channel erosion, and hillslope sediment transport by diffusive mechanisms and by mass failure. Numerical experiments presented explore the effects of different combinations of erosion processes and of dynamic coupling between denudation and flexural isostatic uplift. Model results suggest that the necessary and sufficient conditions for long-term escarpment retreat are (1) incising bedrock channels in which the erosion rate increases with increasing drainage area, so that the channels steepen and propagate headward; (2) a low rate of sediment production relative to sediment transport efficiency, which promotes relief-generating processes over diffusive ones; (3) high continental elevation, which allows greater freedom for fluvial dissection; and (4) any process, including flexural isostatic uplift, that helps to maintain a drainage divide near an escarpment crest. Flexural isostatic uplift also facilitates escarpment, thereby increasing channel gradients and accelerating erosion which in turn generates additional isostatic uplift. Of all the above conditions, high continental elevation is common ot most rift margin escarpments and may ultimately be the most important factor.
Document ID
19950057696
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Tucker, Gregory E.
(Pennsylvania State University University Park, Pennsylvania, United States)
Slingerland, Rudy L.
(Pennsylvania State University University Park, Pennsylvania, United States)
Date Acquired
August 16, 2013
Publication Date
June 10, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: B6
ISSN: 0148-0227
Subject Category
Geophysics
Accession Number
95A89295
Funding Number(s)
CONTRACT_GRANT: NGT-30122
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available