NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Implications of a global survey of venusian impact cratersWe present a global survey of the areal distribution, size-frequency distribution, and morphometric properties of the venusian impact cratering record. We explore the resurfacing history of Venus, crater degradation, ejecta emplacement, and cratering mechanics. The number of volcanically embayed and tectonically deformed craters from 0.5 to 1.0 km above mean planetary radius is disproportionately high for an otherwise crater-deficient elevation range. More resurfacing occurred in this range, an elevation range dominated by volcanic rises, rifts, and coronae, than elsewhere on Venus. Although the majority of craters appear to be relatively undisturbed and have intact ejecta blankets, some craters appear particularly `fresh' because thay have radar-bright floors, a radar-dark halo surrounding the ejecta blanket, and a west facing parabola of low radar return; 20, 35, and 8%, respectively, of craters with diameters greater than 22.6 km have these features. Characteristics of ejecta deposits for venusian craters change substantially with size, particularly at 20 km crater diameter, which marks the transition at which the boundaries of ejecta blankets go from ragged to lobate and the slope of the ejecta distance vs diameter curve steepens. Secondary craters are a ubiquitous part of the ejecta blanket for craters over 50 km but occur infrequently as isolated rays about smaller craters. Comparison of complex craters found on Venus with those of other planets gave results that were consistent with the idea that interplanetary differences in complex crater shape are controlled by interplanetary differences in gravity and crustal strength. The interplanetary comparison indicates that Venus, the Moon, and Mercury appear to have stronger crusts than do Mars and Ganymede/Callisto.
Document ID
19950058550
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Herrick, Robert R.
(Southern Methodist Univ. Dallas, TX, United States)
Phillips, Roger J.
(Washington Univ. Saint Louis, MO, United States)
Date Acquired
August 16, 2013
Publication Date
October 1, 1994
Publication Information
Publication: Icarus
Volume: 111
Issue: 2
ISSN: 0019-1035
Subject Category
Lunar And Planetary Exploration
Accession Number
95A90149
Funding Number(s)
CONTRACT_GRANT: NAGW-3024
CONTRACT_GRANT: NASW-4574
CONTRACT_GRANT: NAGW-3701
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available