NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Solar cycle variation of interplanetary disturbances observed as Doppler scintillation transientsInterplanetary disturbances characterized by plasma that is more turbulence and/or moves faster than the background solar wind are readily defected as transients in Doppler scintillation measurements of the near-Sun solar wind. Systematic analysis of over 23,000 hours of Pioneer Venus Orbiter Doppler measurements obtained inside 0.5 AU during 1979-1987 have made it possible for the first time to investigate the frequency of occurrence of Doppler scintillation transients under solar minimum conditions and to determine its dependence on solar cycle. On the basis of a total of 142 transients, Doppler scintillation transient rates vary from a high of 0.22 in 1979 (one every 4.6 days) to a low of 0.077 transients/d in 1986 (one every 13 days), a decrease by almost a factor of 3 from solar maximum to solar minimum. This solar cycle variation, the strongest yet of any solar wind Doppler scintillation property, is highly correlated with both solar activity characterized by sunspot number and the coronal mass ejection rates deduced from Solswind and Solar Maximum Mission (SMM) coronagraph observations. These results indicate that coronal mass ejections and Doppler scintillation transients are closely related not just during solar maximum, as occasional individual comparisons have shown in the past, but throughout the entire solar cycle, and strengthen the notation that the Doppler scintillation and optical transients are different manifestations of the same physical phenomenon. The magnitudes of the transients, as described by the ratio of peak to pretransient scintillation levels (EF for enhancement factor), and their distribution iwth heliocentric distance also vary with solar cycle. While EF tends to diminish with increasing heliocentric distance during high solar activity, it is more evenly distributed during low solar activity. EF is also lower during solar minimum, as 13% of the transients during solar maximum have values exceeding 23, the highest EF observed during solar minimum. These results are consistent with the fact that occasional major fast-moving interplanetary shocks that are observed during solar maximum are very rate during solar minimum.
Document ID
19950058990
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Woo, Richard
(Jet Propulsion Lab. California Inst. of Tech., Pasadena, CA, United States)
Date Acquired
August 16, 2013
Publication Date
November 1, 1993
Publication Information
Publication: Journal of Geophysical Research
Volume: 98
Issue: A11
ISSN: 0148-0227
Subject Category
Solar Physics
Accession Number
95A90589
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available