NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Grain formation around carbon stars. 1: Stationary outflow modelsAsymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in grain properties. For small outflow velocities, grains form at lower supersaturation ratios and close to the stellar photosphere, resulting in larger but fewer grains. The reverse is true when grains form under high outflow velocities, i.e., they form at higher supersaturation ratios, farther from the star, and are much smaller but at larger quantities.
Document ID
19950060157
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Egan, Michael P.
(Rensselaer Polytechnic Institute, Hanscomb AFB, Massachusetts, United States)
Leung, Chun Ming
(Rensselaer Polytechnic Institute, Troy, New York, United States)
Date Acquired
August 16, 2013
Publication Date
May 1, 1995
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 444
Issue: 1
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A91756
Funding Number(s)
CONTRACT_GRANT: NAGW-2817
CONTRACT_GRANT: NAGW-3144
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available