NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The interstellar disk-halo connection in the spiral galaxy NGC 3079We discuss the morphology and excitation of ionized gas in the nearby Sc galaxy NGC 3079. The almost edge-on orientation is ideal for studying the vertical structure of the gaseous disk, and especially the diffuse ionized medium (DIM) found between the bright H II regions. We used the Hawaii Imaging Fabry-Perot Interferometer (HIFI) to map 150,000 H-alpha + (N II) lambda lambda 6548, 6583 emission-line profiles across the entire disk, with resolution 70 km/s at subarcsecond steps, down to a flux level of approximately 10(exp -17) ergs/s/sq cm (EM approximately equal to 4 cm(exp -6) pc). The DIM contributes approximately 30% of the total disk H-alpha emission within a radius of 10 kpc. The DIM has broader emission lines and larger (N II) H-alpha flux ratios than the adjacent H II regions. Within a radius of 5 kpc, we find that the X-shaped filaments reported in previous studies emerge from the inner (R approximately equal to 1.5 kpc) disk, and rise more than 4 kpc above the disk plane. The morphology, kinematics, and excitation of the filaments suggest that they form a biconic interface between the undisturbed disk gas, and gas entrained in the wide-angle outflow. The DIM beyond 5 kpc radius is more vertically extended than the thick ionized disk detected in our Galaxy and in a few nearby edge-on systems. After correcting for dust, the vertical profile of this DIM has an exponential scale height of about 1.1 kpc, similar to that of the H I disk. The (N II) lambda 6538/H-alpha flux ratio of the DIM increases monotonically with vertical height, reaching unity for absolute value of z greater than or approximately equal to 2.5 kpc. The flux required to keep the DIM ionized at R = 8 kpc is similar to that near the solar circle of our Galaxy. Highly dilute radiation from O stars in the galactic plane probably maintains the DIM. The total mass of the DIM is of order 10(exp 8) - 10(exp 9) solar mass, representing less than 1% of the total dynamical mass of NGC 3079. Mechanical energy from intense star formation in the disk probably lifts the DIM above the disk. The several bubbles and filaments within 1 kpc of the disk plane is direct evidence for gas flow between the disk and halo.
Document ID
19950060455
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Veilleux, Sylvain
(NOAO, Tucson, AZ United States)
Cecil, Gerald
(University of North Carolina, Chapel Hill, NC United States)
Bland-Hawthorne, J.
(Anglo-Australian Observatory Epping, Australia)
Date Acquired
August 17, 2013
Publication Date
May 20, 1995
Publication Information
Publication: The Astrophysical Journal, Part 1
Volume: 445
Issue: 1
ISSN: 0004-637X
Subject Category
Astronomy
Accession Number
95A92054
Funding Number(s)
CONTRACT_GRANT: NSF AST-88-18900
CONTRACT_GRANT: NSF AST-90-22128
CONTRACT_GRANT: NAS5-26555
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available