NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cosmological implications of ROSAT observations of groups and clusters of galaxiesWe have combined ROSAT Position Sensitive Proportional Counter (PSPC) and optical observations of a sample of groups and clusters of galaxies to determine the fundamental parameters of these systems (e.g., the dark matter distribution, gas mass fraction, baryon mass fraction, mass-to-light ratio, and the ratio of total-to-luminous mass). Imaging X-ray spectroscopy of groups and clusters show that the gas is essentially isothermal beyond the central region, indicating that the total mass density (mostly dark matter) scales as rho(sub dark) varies as 1/r squared. The density profile of the hot X-ray emitting gas is fairly flat in groups with rho(sub gas) varies as 1/r and becomes progressively steeper in hotter richer systems, with rho(sub gas) varies as 1/r squared in the richest clusters. These results show, that in general, the hot X-ray-emitting gas is the most extended mass component in groups and clusters, the galaxies are the most centrally concentrated component, and the dark matter is intermediate between the two. The flatter density rofile of the hot gas compared to the dark matter produces a gas mass fraction that increases with radius within each object. There is also a clear trend of increasing gas mass fraction (from 2% to 30%) between elliptical galaxies and rich clusters due to the greater detectable extent of the X-ray emission in richer systems. For the few systems in which the X-ray emission can be traced to the virial radius (where the overdensity delta is approximately equal 200), the gas mass fraction (essentially the baryon mass fraction) approaches a roughly constant value of 30%, suggesting that this is the true primordial value. Based on standard big bang nucleosynthesis, the large baryon mass fraction implies that Omega = 0.1 - 0.2. The antibiased gas distribution suggests that feedback from galaxy formation and hydrodynamics play important roles in the formation of structure on the scale of galaxies to rich clusters. All the groups and clusters in our sample have mass-to-light ratios of M/L(sub V) approximately 100 - 150 solar mass/solar luminosity, which strongly contrasts with the traditional view that the mass-to-light ratio of rich clusters is significantly greater than individual galaxies or groups with M/L(sub V) approximately 250 - 300 solar mass/solar luminosity. We also show that M/L(sub V is essentially constant within the virial radius of clusters (where delta is greater than or approximately 200), which is consistent with the peaks formalism of biased galaxy formation. While the mass-to-light ratios of groups and clusters are comparable (indicating a constant mass fraction of optically luminous material), the ratio of the total mass-to-luminous mass (gas plus stars) monotonically decreases between galaxies and clusters. The decrease in M(sub total)/M(sub lum) arises from two factors: (1) the composition of baryonic matter varies from a predominance of optically luminous material (stars) on the scale of galaxies (approximately 10 kpc) to a predominance of X-ray luminous material (hot gas) on the scale of rich clusters (approximately 1 Mpc), and (2) the hot gas has a more extended spatial distribution than the gravitating matter. The observed decrease M(sub total)/M(sub lum) between galaxies and clusters indicates that the universe actually becomes `brighter' on mass scales between 10(exp 12) and 10(exp 15) solar mass, in the sense that a greater fraction of the gravitating mass is observable.
Document ID
19950061676
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
David, Laurence P.
(Harvard-Smithsonian Center for Astrophysics, Cambridge, MA United States)
Jones, Christine
(Harvard-Smithsonian Center for Astrophysics, Cambridge, MA United States)
Forman, William
(Harvard-Smithsonian Center for Astrophysics, Cambridge, MA United States)
Date Acquired
August 16, 2013
Publication Date
June 1, 1995
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 445
Issue: 2
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A93275
Funding Number(s)
CONTRACT_GRANT: NAG5-2155
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available