NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Kinetic Kelvin-Helmholtz instability at a finite sized objectTwo-dimensional hybrid simulations with particle ions and fluid electrons are used to calculate the kinetic evolution of the self-consistent flow around a two-dimensional obstacle with zero intrinsic magnetic field. Plasma outlfow from the obstacle is used to establish a boundary layer between the incoming solar wind and the outgoing plasma. Because the self-consistent flow solution, a velocity shear is naturally set up at this interface, and since the magnetic field for these simulations is transverse to this flow, the Kelvin-Helmholtz (K-H) instability can be excited at low-velocity shear. Simulations demonstrate the existence of the instability even near the subsolar location, which normally is thought to be stable to this instability. The apparent reason for this result is the overall time dependence at the boundary layer, which gives rise to a Rayleigh-Taylor like instability which provides seed perturbations for the K-H instability. These results are directly applicable to Venus, comets, artificial plasma releases, and laser target experiments. This result has potentially important ramifications for the interpretation of observational results as well as for an estimation of the cross-field transport. The results suggest that the K-H instability may play a role in dayside processes and the Venus ionopause, and may exist within the context of more general situations, for example, the Earth's magnetopause.
Document ID
19950063946
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Thomas, V. A.
(Los Alamos National Laboratory, Los Alamos, NM United States)
Date Acquired
August 17, 2013
Publication Date
July 1, 1995
Publication Information
Publication: Journal of Geophysical Research
Volume: 100
Issue: A7
ISSN: 0148-0227
Subject Category
Plasma Physics
Accession Number
95A95545
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available