NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Graphite fiber textile preform/copper matrix compositesGraphite fiber reinforced/copper matrix composites have sufficiently high thermal conduction to make them candidate materials for critical heat transmitting and rejection components. The term textile composites arises because the preform is braided from fiber tows, conferring three-dimensional reinforcement and near net shape. The principal issues investigated in the past two years have centered on developing methods to characterize the preform and fabricated composite and on braidability. It is necessary to have an analytic structural description for both processing and final property modeling. The structure of the true 3-D braids used is complex and has required considerable effort to model. A structural mapping has been developed as a foundation for analytic models for thermal conduction and mechanical properties. The conductivity has contributions both from the copper and the reinforcement. The latter is accomplished by graphitization of the fibers, the higher the amount of graphitization the greater the conduction. This is accompanied by an increase in the fiber modulus, which is desirable from a stiffness point of view but decreases the braidability; the highest conductivity fibers are simply too brittle to be braided. Considerable effort has been expended on determining the optimal braidability--conductivity region. While a number of preforms have been fabricated, one other complication intervenes; graphite and copper are immiscible, resulting in a poor mechanical bond and difficulties in infiltration by molten copper. The approach taken is to utilize a proprietary fiber coating process developed by TRA, of Salt Lake City, Utah, which forms an itermediary bond. A number of preforms have been fabricated from a variety of fiber types and two sets of these have been infiltrated with OFHC copper, one with the TRA coating and one without. Mechanical tests have been performed using a small-scale specimen method and show the coated specimens to have superior mechanical properties. Final batches of preforms, including a finned, near net shape tube, are being fabricated and will be infiltrated before summer.
Document ID
19960000407
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Gilatovs, G. J.
(North Carolina Agricultural and Technical State Univ. Greensboro, NC, United States)
Lee, Bruce
(North Carolina Agricultural and Technical State Univ. Greensboro, NC, United States)
Bass, Lowell
(North Carolina Agricultural and Technical State Univ. Greensboro, NC, United States)
Date Acquired
September 6, 2013
Publication Date
August 1, 1995
Publication Information
Publication: NASA. Lewis Research Center, HBCUs Research Conference Agenda and Abstracts
Subject Category
Composite Materials
Accession Number
96N10407
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available