NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Space qualification of IR-reflecting coverslides for GaAs solar cellsImprovements to GaAs solar array performance, from the use on solar cell coverslides of several reflecting coatings that reject unusable portions of the solar spectrum, are quantified. Blue-red-rejection (BRR) coverslides provide both infrared reflection (IRR) and ultraviolet rejection (UVR). BRR coverslides were compared to conventional antireflection (AR) and ultraviolet (UV) coated coverslides. A 2% improvement in peak-power output, relative to that from Ar-coated coverslides, is seen for cells utilizing BRR coverslides with the widest bandpass. Coverslide BRR-filter bandpass width and covered-solar-cell short-circuit current is a function of incident light angle and the observed narrower-bandpass filters are more sensitive to change in angle from the normal than are wide-bandpass filters. The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has indicated that all multilayer coatings on coverslides and solar cells will experience degradation from the space environment (UV and/or electrons). Five types of coverslide coatings, designed for GaAs solar cells, were tested as part of a NASA-sponsored space-flight qualification for BRR, multi-layer-coated, coverslides. The reponse to the different radiations varied with the coatings. The extent of degradation and its consequences on the solar cell electrical characteristics depend upon the coatings and the radiation. In some cases, an improved optical coupling was observed during long-term UV exposure to the optical stack. The benefits of multi-layered solar cell optics may depend upon both the duration and the radiation environment of a mission.
Document ID
19960007905
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Meulenberg, Andrew
(Meulenberg (Andrew) Gaithersburg, MD, United States)
Date Acquired
September 6, 2013
Publication Date
October 1, 1995
Publication Information
Publication: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14)
Subject Category
Energy Production And Conversion
Accession Number
96N15071
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available