NTRS - NASA Technical Reports Server

Back to Results
Analysis of Sensory/Active Piezoelectric Composite Structures in Thermal EnvironmentsAlthough there has been extensive development of analytical methods for modeling the behavior of piezoelectric structures, only a limited amount of research has been performed concerning the implications of thermal effects on both the active and sensory response of smart structures. Thermal effects become important when the piezoelectric structure has to operate in either extremely hot or cold temperature environments. Consequently, the purpose of this paper is to extend the previously developed discrete layer formulation of Saravanos and Heyliger to account for the coupled mechanical, electrical, and thermal response in modern smart composite beams. The mechanics accounts for thermal effects which may arise in the elastic and piezoelectric media at the material level through the constitutive equations. The displacements, electric potentials, and temperatures are introduced as state variables, allowing them to be modeled as variable fields through the laminate thickness. This unified representation leads to an inherent capability to model both the active compensation of thermal distortions in smart structures and the resultant sensory voltage when thermal loads are applied. The corresponding finite element formulation is developed and numerical results demonstrate the ability to model both the active and sensory modes of composite beams with heterogeneous plies with attached piezoelectric layers under thermal loadings.
Document ID
Document Type
Conference Paper
Lee, Ho-Jun
(NASA Lewis Research Center Cleveland, OH United States)
Saravanos, Dimitris A.
(Ohio Aerospace Inst. Cleveland, OH United States)
Date Acquired
August 17, 2013
Publication Date
March 1, 1996
Publication Information
Publication: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications
Subject Category
Instrumentation And Photography
Distribution Limits
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle19960047656Analytic PrimaryProceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications
Document Inquiry
No Preview Available