NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Magnetothermal Convection in Nonconducting Diamagnetic and Paramagnetic FluidsNonuniform magnetic fields exert a magnetic body force on electrically nonconducting classical fluids. These include paramagnetic fluids such as gaseous and liquid oxygen and diamagnetic fluids such as helium. Recent experiments show that this force can overwhelm the force of gravity even at the surface of the earth; it can levitate liquids and gases, quench candle flames, block gas flows, and suppress heat transport. Thermal gradients render the magnetic force nonuniform through the temperature-dependent magnetic susceptibility. These thermal gradients can therefore drive magnetic convection analogous to buoyancy-driven convection. This magnetothermal convection can overwhelm convection driven by gravitational buoyancy in terrestrial experiments. The objectives of the proposed ground-based theoretical study are (a) to supply the magnetothermohydrodynamic theory necessary to understand these recent experiments and (b) to explore the consequences of nonuniform magnetic fields in microgravity. Even the linear theory for the onset of magnetothermal convection is lacking in the literature. We intend to supply the linear and nonlinear theory based on the thermohydrodynamic equations supplemented by the magnetic body force. We intend to investigate the effect of magnetic fields on gas blockage and heat transport in microgravity. Since magnetic fields provide a means of creating arbitrary, controllable body force distributions, we intend to investigate the possibility of using magnetic fields to position and control fluids in microgravity. We also intend to investigate the possibility of creating stationary terrestrial microgravity environments by using the magnetic force to effectively cancel gravity. These investigations may aid in the design of space-based heat-transfer, combustion, and human-life-support equipment.
Document ID
19970000468
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Edwards, Boyd F.
(West Virginia Univ. Morgantown, VA United States)
Gray, Donald D.
(West Virginia Univ. Morgantown, VA United States)
Huang, Jie
(West Virginia Univ. Morgantown, VA United States)
Date Acquired
August 17, 2013
Publication Date
September 1, 1996
Publication Information
Publication: Third Microgravity Fluid Physics Conference
Subject Category
Materials Processing
Accession Number
97N10435
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available