NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Elucidation of Free Radical and Optogalvanic Spectroscopy Associated with Microgravity Combustion via Conventional and Novel Laser PlatformsCombustion studies under both normal gravity and microgravity conditions depend a great deal on the availability and quality of the diagnostic systems used for such investigations. Microgravity phenomena are specially susceptible to even small perturbations and therefore non-intrusive diagnostic techniques are of paramount importance for successful understanding of reduced-gravity combustion phenomena. Several non-intrusive diagnostic techniques are available for probing and delineating normal as well as reduced gravity combustion processes, such as Rayleigh scattering, Raman scattering, Mie scattering, velocimetry, interferometric and Schlieren techniques, emission and laser-induced fluorescence (LIF) spectroscopy. Our approach is to use the LIF technique as a non-intrusive diagnostic tool for the study of combustion-associated free radicals and use the concomitant optogalvanic transitions to accomplish precise calibration of the laser wavelengths used for recording the excitation spectra of transient molecular species. In attempting to perform spectroscopic measurements on chemical intermediates, we have used conventional laser sources as well as new and novel platforms employing rare-earth doped solid-state lasers. Conventional (commercially available) sources of tunable UV laser radiation are extremely cumbersome and energy-consuming devices that are not very suitable for either in-space or in-flight (or microgravity drop tower) experiments. Traditional LIF sources of tunable UV laser radiation involve in addition to a pump laser (usually a Nd:YAG laser with an attached frequency-doubling stage), a tunable dye laser. In turn, the dye laser has to be provided with a dye circulation system and a subsequent stage for frequency-doubling of the dye laser radiation, together with a servo-tuning system (termed the 'Autotracker') to follow the wavelength changes and also an optical system (called the 'Frequency Separator') for separation of the emanating visible and UV beams. In contrast to this approach, we have devised an alternate arrangement for recording LIF excitation spectra of free radicals (following appropriate precursor fragmentation) that utilizes a tunable rare-earth doped solid state laser system with direct UV pumping. We have designed a compact and portable tunable UV laser system incorporating features necessary for both in-space and in-flight spectroscopy experiments. For the purpose of LIF excitation, we have developed an all-solid-state tunable UV laser that employs direct pumping of the solid-state UV-active medium employing UV harmonics from a Nd:YAG laser. An optical scheme with counterpropagating photolysis and excitation beams focused by suitable lenses into a reaction vacuum chamber was employed.
Document ID
19970020593
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Misra, Prabhakar
(Howard Univ. Washington, DC United States)
She, Yong-Bo
(Howard Univ. Washington, DC United States)
Zhu, Xin-Ming
(Howard Univ. Washington, DC United States)
King, Michael
(Howard Univ. Washington, DC United States)
Date Acquired
August 17, 2013
Publication Date
May 1, 1997
Publication Information
Publication: Fourth International Microgravity Combustion Workshop
Subject Category
Materials Processing
Accession Number
97N21866
Funding Number(s)
CONTRACT_GRANT: NAG3-1677
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available