NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Temperature-Dependent Kinetics Studies of the Reactions Br((sup 2)P3/2) + H2S yields SH + HBr and Br((sup 2)P3/2) + CH3SH yields CH3S + HBr. Heats of Formation of SH and CH3S RadicalsTime resolved resonance fluorescence detection of Br(sup 2)P3/2) atom disappearance or appearance following 266-nm laser flash photolysis of CF2Br2/H2S/H2/N2, CF2Br2/CH3SH/H2/N2, Cl2CO/H2S/HBr/N2, and CH3SSCH3/HBr/H2/N2 mixtures has been employed to study the kinetics of the reactions Br((sup 2)P3/2) + H2S = SH + HBr (1,-1) and Br((sup2)P3/2) + CH3SH = CH3S + HBr (2, -2) as a function of temperature over the range 273-431K. Arrhenius expressions in units of 10(exp -12) cu cm/molecule/s which describe the results are k1 = (14.2 +/- 3.4) exp[(-2752 +/- 90)/T],(k-1) = (4.40 +/- 0.92) exp[(-971 +/- 73)/T],k(2) = (9.24 +/- 1.15) exp[(-386 +/- 41)/T], and k(-2) = (1.46 +/-0.21) exp[(-399 +/-41)/T; errors are 2 sigma and represent precision only. By examining Br((sup 2)P3/2) equilibrium kinetics following 355nm laser flash photolysis of Br2/CH3SH/H2/N2 mixtures, a 298 K rate coefficient of (1.7 +/- 0.5) x 10(exp -10) cu cm/molecule/s has been obtained for the reaction CH3S + Br2 yields CH3SBr + Br. To our knowledge, these are the first kinetic data reported for each of the reactions studied. Measured rate coefficients, along with known rate coefficients for similar radical + H2S, CH3SH, HBr,Br2 reactions are considered in terms of possible correlations of reactivity with reaction thermochemistry and with IP - EA, the difference between the ionization potential of the electron donor and the electron affinity of the electron acceptor. Both thermochemical and charge-transfer effects appear to be important in controlling observed reactivities. Second and third law analyses of the equilibrium data for reactions 1 and 2 have been employed to obtain the following enthalpies of reaction in units of kcal/mol: for reaction 1, Delta-H(298) = 3.64 +/- 0.43 and Delta-H(0) = 3.26 +/-0.45; for reaction 2, Delta-H(298) = -0.14 +/- 0.28 and Delta-H(0) = -0.65 +/- 0.36. Combining the above enthalpies of reaction with the well-known heats of formation of Br, HBr, H2S, and CH3SH gives the following heats of formation for the RS radicals in units of kcal/mol: Delta-H(sub f)(sub 0)(SH) = 34.07 +/- 0.72, Delta-H(sub f)(sub 298)(SH) = 34.18 +/- 0.68, Delta-H(sub f)(sub 0)(CH3S) = 31.44 +/- 0.54, Delta-H(sub f)(sub 298)(CH3S) = 29.78 +/- 0.44; errors are 2 sigma and represent estimates of absolute accuracy. The SH heat of formation determined from our data agrees well with literature values but has reduced error limits compared to other available values. The CH3S heat of formation determined from our date is near the low end of the range of previous estimates and is 3-4 kcal/mol lower than values derived from recent molecular beam photofragmentation studies.
Document ID
19980015261
Acquisition Source
Headquarters
Document Type
Reprint (Version printed in journal)
Authors
Nicovich, J. M.
(Georgia Inst. of Tech. Atlanta, GA United States)
Kreutter, K. D.
(Georgia Inst. of Tech. Atlanta, GA United States)
vanDijk, C. A.
(Georgia Inst. of Tech. Atlanta, GA United States)
Wine, P. H.
(Georgia Inst. of Tech. Atlanta, GA United States)
Date Acquired
August 17, 2013
Publication Date
April 9, 1997
Publication Information
Publication: Laboratory Investigations of Stratospheric Halogen Chemistry
Publisher: American Chemical Society
ISSN: 0022-3654
Subject Category
Inorganic And Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NSF ATM-9104807
CONTRACT_GRANT: NAGw-1001
CONTRACT_GRANT: NSF ATM-8802386
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available