NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
SSME Condition Monitoring Using Neural Networks and Plume Spectral SignaturesFor a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has become an important concern for both ground tests and in-flight operation. The complexities of the SSME suggest that active, real-time condition monitoring should be performed to avoid large-scale or catastrophic failure of the engine. In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD) system. The OPAD system is designed to provide condition monitoring of the SSME during ground-level testing. The operational health of the engine is achieved through the acquisition of spectrally resolved plume emissions and the subsequent identification of abnormal emission levels in the plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of the technology, could find its way on to an actual space vehicle and provide in-flight engine condition monitoring. This technology step, however, will require miniaturized hardware capable of processing plume spectral data in real-time. An objective of OPAD condition monitoring is to determine how much of an element is present in the SSME plume. The basic premise is that by knowing the element and its concentration, this could be related back to the health of components within the engine. For example, an abnormal amount of silver in the plume might signify increased wear or deterioration of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut down before catastrophic failure occurs. Currently, element concentrations in the plume are determined iteratively with the help of a non-linear computer code called SPECTRA, developed at the USAF Arnold Engineering Development Center. Ostensibly, the code produces intensity versus wavelength plots (i.e., spectra) when inputs such as element concentrations, reaction temperature, and reaction pressure are provided. However, in order to provide a higher-level analysis, element concentration is not specified explicitly as an input. Instead, two quantum variables, number density and broadening parameter, are used. Past experience with OPAD data analysis has revealed that the region of primary interest in any SSME plume spectrum lies in the wavelength band of 3300 A to 4330 A. Experience has also revealed that some elements, such as iron, cobalt and nickel, cause multiple peaks over the chosen wavelength range whereas other elements (magnesium, for example) have a few, relatively isolated peaks in the chosen wavelength range. Iteration with SPECTRA as a part of OPAD data analysis is an incredibly labor intensive task and not one to be performed by hand. What is really needed is the "inverse" of the computer code but the mathematical model for the inverse mapping is tenuous at best. However, building generalized models based upon known input/output mappings while ignoring details of the governing physical model is possible using neural networks. Thus the objective of the research project described herein was to quickly and accurately predict combustion temperature and element concentrations (i.e., number density and broadening parameter) from a given spectrum using a neural network. In other words, a neural network had to be developed that would provide a generalized "inverse" of the computer code SPECTRA.
Document ID
19980206167
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Hopkins, Randall
(Alabama Univ. Tuscaloosa, AL United States)
Benzing, Daniel
(Alabama Univ. Tuscaloosa, AL United States)
Date Acquired
August 18, 2013
Publication Date
October 1, 1996
Subject Category
Spacecraft Propulsion And Power
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available